}
740.51-320 Евро-2-3 |
740.50-360 Евро-2-3 |
740.30-260 Евро-2 |
740.31-240 Евро-2 |
740.50 и 740.51 - взаимозаменяемы, - отличаются мощностью, ТНВД и некоторыми единицами навесного оборудования.
К классу КамАЗ Евро-2 относятся двигатели: 740.30, 740.31, 740.50 и 740.51.
740.31-240 - модель , которая подходит под коробку с делителем старого образца КПП-15 или КПП-152.
740.30-260 сочетается только с коробкой 154 или ZF. Может использоваться при переоборудовании КамАЗ при замене двигателя Cummins.
Общий вид, продольный и поперечный разрезы двигателя 740.30-260 приведены на следующих рисунках.
Двигатель 740.31 отличается от 740.30 только задней крышкой, коленчатым валом и, соответственно, маховиком и сцеплением.
По своим экологическим показателям двигатели 740.30-260 соответствуют требованиям правил ЕЭК ООН уровня EVRO-2.
Общее описание
Двигатель 740.30-260 4-тактный с воспламенением от сжатия, жидкостного охлаждения, с V-образным расположением восьми цилиндров, с турбонаддувом и промежуточным охлаждением воздуха (ОНВ) типа «воздух-воздух».
Базовой деталью двигателя является блок цилиндров, на котором установлены и закреплены агрегаты и детали двигателя. В расточку полублоков установлены гильзы цилиндров “мокрого” типа. Сверху гильзы цилиндров закрыты головками, отдельными на каждый цилиндр. Снизу блок цилиндров закрыт штампованным масляным картером.
В блоке цилиндров на пяти подшипниках скольжения расположен распределительный вал. Коленчатый вал установлен в нижней части блока.
Система охлаждения двигателя жидкостная, закрытого типа, рассчитана на применение низкозамерзающей охлаждающей жидкости.
Техническая характеристика двигателя 740.30-260
Наименование параметра, характеристика | Значение |
Тип двигателя | Четырехтактный, с воспламенением от сжатия |
Расположение цилиндров | V-образное, с углом развала 90° |
Порядок работы цилиндров | 1-5-4-2-6-3-7-8 |
Направление вращения коленчатого вала | правое (против часовой стрелки, если смотреть со стороны маховика) |
Диаметр цилиндров и ход поршня, мм | 120×120 |
Рабочий объем, л. | 10,85 |
Номинальная мощность, кВт (л.с.) | 191 (260) |
Максимальный крутящий момент, Н м (кгс м) | 1079(110) |
Установочный угол опережения впрыскивания топлива, град. | 94’ |
Частота вращения коленчатого вала, мин1: | |
– номинальная | 2200±50 |
– при максимальном крутящем моменте | 1200… 1600 |
на холостом ходу: | |
– минимальная | 600±20 |
– максимальная | 2530-80 |
Количество клапанов в головке цилиндра | 2 (впускной и выпускной) |
Зазоры на холодном двигателе, между коромыслами и стержнями клапанов: | впускных – 0,25…0,30 мм; выпускных – 0,35…0,40 мм. |
Давление масла в прогретом двигателе при частоте вращения коленчатого вала, кПа (кгс/см2): | |
– номинальной | 392…539 (4…5,5) |
– минимальной холостого хода, не менее | 98(1) |
Форсунка, тип | 273 |
Модели | 273.1112010-21(273-21) |
Распылитель производства «ЯЗДА» модели | 273.1112110-21 |
или | или |
Модели | 273.1112010-51 (273-51) |
Распылитель производства ф. «БОШ» | DLLA 148 SV3 142 323 |
Давление начала подъема иглы форсунки, МПа (кгс/см2) | 23,73…24,90 (242…254) |
Топливный насос высокого давления (ТНВД) модели | 337-20 |
ГНВД (автобусная комплектация) модели Система наддува | 337-71 газотурбинная с двумя турбокомпрессорами и ОНВ типа «воздух-воздух». |
Генератор модели Г-273 В или 6582.3701 (в соответствии с конструкторской документацией | трехфазный синхронный, переменного тока, со встроенным выпрямительным блоком |
Генератор Г-273В: | 28 |
– номинальный ток, А; | 28 |
– номинальное выпрямленное напряжение, В; | 0,8 |
– номинальная мощность, кВт. | |
Генератор мод. 6582.3701: | 75 |
– номинальный ток, А; | 28 |
– номинальное выпрямленное напряжение, В; | 2,0 |
– номинальная мощность, кВт. | |
Стартер 5662.3708 | постоянного тока, последовательного возбуждения, с электромагнитным приводом |
номинальная мощность, кВт | 8,2 |
Блок цилиндров является основной корпусной деталью двигателя и представляет собой отливку из чугуна с вермикулярным графитом.
Левый ряд расточек под гильзы смещен относительно правого вперед (к вентилятору) на 29,5 мм, что обусловлено установкой на каждую шатунную шейку коленчатого вала двух шатунов.
Каждая расточка имеет два соосных цилиндрических отверстия, выполненные в верхнем и нижнем поясах блока, по которым центрируются гильзы цилиндра, и выточки в верхнем поясе, образующие кольцевые площадки под бурты гильз. Чтобы обеспечить правильную посадку гильзы в блоке, параметры плоскостности и перпендикулярности упорной площадки под бурт гильзы относительно оси центрирующих расточек выполняются с высокой точностью.
На нижнем поясе выполнены две канавки под уплотнительные кольца, которые предотвращают попадание охлаждающей жидкости из полости охлаждения блока в полость масляного картера двигателя.
Бобышки отверстий под болты крепления головок цилиндров выполнены в виде приливов к поперечным стенкам, образующим рубашку охлаждения, равномерно распределены вокруг каждого цилиндра.
Картерная часть блока связана с крышками коренных подшипников коренными и стяжными болтами. Центрирование крышек коренных подшипников производится горизонтальными штифтами 8 (рисунок 11), которые запрессованы на стыке между блоком и крышками, но большей частью входящими в блок для предотвращения их выпадения при снятии крышек.
Кроме того, крышка пятой коренной опоры центрируется в продольном направлении двумя вертикальными штифтами, обеспечивающими точность совпадения расточек под упорные полукольца коленчатого вала на блоке и на крышках.
Расточка блока цилиндров под вкладыши коренных подшипников производится в сборе с крышками, поэтому крышки коренных подшипников невзаимозаменяемы и устанавливаются в строго определенном положении. На каждой крышке нанесен порядковый номер опоры, нумерация которых начинается с переднего торца блока.
В картерной части развала блока цилиндров в виде бобышек выполнены направляющие толкателей клапанов. Ближе к заднему торцу между четвертым и восьмым цилиндрами, для улучшения циркуляции охлаждающей жидкости, выполнена перепускная труба полости охлаждения. Одновременно она придает блоку еще и дополнительную жесткость. Параллельно оси расточек под подшипники коленчатого вала выполнены расточки под втулки распределительного вала увеличенной размерности.
Диаметры масляных каналов в блоке цилиндров увеличены.
В нижней части цилиндров отлиты, заодно с блоком, бобышки под форсунки охлаждения поршней.
С целью установки на блок фильтра с теплообменником на правой стороне увеличена, по сравнению с двигателем 740.10, площадка под фильтр, введены два дополнительных крепежных отверстия и сливное отверстие из фильтра.
В переходный период освоения производства в составе двигателя 740.30-260 может быть использован блок цилиндров с доработанными привертными направляющими толкателей, со втулками распределительного вала увеличенной размерности, без увеличенных масло-каналов, без фиксации крышек коренных подшипников по горизонтальным штифтам.
Моменты затяжки болтов крепления – 73,5…93 Н м (7,5…9,5 кгс м).
Гильзы цилиндров (рисунок 6) “мокрого” типа, легкосъемные имеют маркировку 7406 на конусной части внизу гильзы.
Гильза цилиндра изготавливается из серого специального чугуна упрочненного объемной закалкой и отличается по величине зоны отпуска от термообработки гильз, не имеющих указанной маркировки. Установка на двигатель КАМАЗ 740.30 (740.31) гильз без указанной маркировки ведет к ускорению износа гильз и поршневых колец.
В соединении гильза – блок цилиндров полость охлаждения уплотнена резиновыми кольцами круглого сечения. В верхней части установлено кольцо 5 в проточке гильзы, в нижней части – два кольца 4 в расточки блока цилиндров.
При сборке двигателя на нерабочем выступе торца гильзы наносится номер цилиндра и индекс варианта исполнения поршня.
Привод агрегатов (рисунок 7) осуществляется прямозубыми зубчатыми колесами и служит для привода механизма газораспределения, топливного насоса высокого давления, компрессора и насоса гидроусилителя руля автомобиля.
Приводится в действие от шестерни 10, установленной на конце коленчатого вала, через блок промежуточных зубчатых колес, которые вращаются на двух рядах роликов 3, разделённых промежуточной втулкой 4 и расположенных на оси 1, закреплённой на заднем торце блока цилиндров.
На конец распределительного вала напрессовано зубчатое колесо 15, угловое расположение которого относительно кулачков вала определяется шпонкой.
Зубчатое колесо 15 привода топливного насоса высокого давления (ТНВД) установлено на валу 13 привода ТНВД и фиксируется шпонкой 14.
Зубчатые колеса устанавливаются на двигатель в строго определенном положении по метке «0» на шестерне привода распредвала, метке «Е» на шестерне привода ТНВД и рискам, выбитым на зубчатых колесах, как показано на рисунке 7.
Привод ТНВД осуществляется от зубчатого колеса 15, находящегося в зацеплении с зубчатым колесом распределительного вала 15. Вращение от вала к ТНВД передается через ведущую и ведомую полумуфты с упругими пластинами, которые компенсируют несоосность установки валов ТНВД и зубчатого колеса. С зубчатым колесом привода ТНВД находятся в зацеплении зубчатые колеса компрессора и насоса гидроусилителя руля.
К заднему торцу блока цилиндров крепится картер агрегатов. В верхней части картера агрегатов есть расточки, в которые устанавливаются компрессор и насос гидроусилителя руля. По бокам картера агрегатов выполнены бобышки с отверстиями для слива масла из турбокомпрессоров и отверстием под указатель уровня масла.
Привод агрегатов закрыт картером маховика, закреплённым к заднему торцу блока цилиндров через картер агрегатов.
На картере маховика справа предусмотрено место для установки фиксатора маховика, применяемый для установки угла опережения впрыскивания топлива и регулирования тепловых зазоров в механизме газораспределения. Ручка фиксатора при работе двигателя должна находиться в верхнем положении.
В нижнее положение ее переводят при регулировочных работах, в этом случае фиксатор находится в зацеплении с маховиком. В верхней части картера маховика выполнена расточка, в которую устанавливается корпус заднего подшипника. Внизу в левой части картера имеется расточка, в которую устанавливается стартер. В середине картера выполнена расточка под манжету коленчатого вала.
В верхней части картера слева выполнен прилив, предназначенный для установки коробки отбора мощности (КОМ). В случае отсутствия КОМ внутренние поверхности прилива не обрабатываются. Задний фланец картера маховика выполнен с присоединительными размерами по SAE1.
Коленчатый вал (рисунок 8) изготовлен из высококачественной стали и имеет пять коренных и четыре шатунные шейки, связанные щеками и сопряженные переходными галтелями. Для равномерного чередования рабочих ходов шатунные шейки коленчатого вала расположены под углом 90°.
К каждой шатунной шейке присоединяются два шатуна (рисунок 9): -один для правого и один для левого рядов цилиндров.
Подвод масла к шатунным шейкам производится через отверстия в коренных шейках 8 и отверстия 7 (рисунок 8), не пересекающиеся с облегчающими отверстиями 6 в шатунных шейках.
Для уравновешивания сил инерции и уменьшения вибраций коленчатый вал имеет шесть противовесов, отштампованных заодно со щеками коленчатого вала. Кроме основных противовесов, имеется дополнительный съемный противовес 1, напрессованный на вал, его угловое расположение относительно коленчатого вала определяется шпонкой 5. Для обеспечения требуемого дисбаланса, на маховике выполняется выборка 6 (рисунок 12)
На хвостовике коленчатого вала выполнена шейка 9 (рисунок 10), по которой центрируется шестерня коленчатого вала 8 и маховик 1 (рисунок 13). На заднем торце коленчатого вала выполнено десять резьбовых отверстий М16х1,5-6Н для крепления шестерни коленчатого вала и маховика, на переднем торце выполнено восемь резьбовых отверстий M12x1,25-6Н для крепления гасителя крутильных колебаний.
В полость носка коленчатого вала установлена заглушка 4 (рисунок 8), через калиброванное отверстие которой осуществляется смазка шлицевого валика переднего привода отбора мощности.
От осевых перемещений коленчатый вал зафиксирован двумя полукольцами 1 и двумя полукольцами 2 (рисунок 10), установленными в проточках задней коренной опоры блока цилиндров, так, что сторона с канавками прилегает к упорным торцам вала.
На носке и хвостовике коленчатого вала (рисунок 8) установлены шестерни привода масляных насосов 3, 2 и привода газораспределительного механизма 8 (рисунок 10).
Уплотнение коленчатого вала осуществляется резиновой манжетой 8 (рисунок 13), с дополнительным уплотняющим элементом – пыльником 9. Манжета размещена в картере маховика 4. Манжета изготовлена из фторкаучука по технологии формования рабочей уплотняющей кромки непосредственно в прессформе.
Номинальные диаметры шеек коленчатого вала: коренных 95-0,015 мм, шатунных 80-0,013 мм.
Пределы допусков по диаметру шейки коленчатого вала, диаметру отверстия в блоке цилиндров и диаметру отверстия в кривошипной головке шатуна при восстановлении двигателя должны быть такими же, как у номинальных размеров.
Коленчатый вал двигателя КАМАЗ Евро-2 740.30 и 740.31 имеет следующие основные отличия от коленвалов моторов Евро-0 740.10 и 7403.10, и делают их невзаимозаменяемыми:
Коренные и шатунные подшипники изготовлены из стальной ленты, покрытой слоем свинцовистой бронзы толщиной 0,3 мм., слоем свинцово-оловянистого сплава толщиной 0,022 мм, и слоем олова толщиной 0,003 мм. Верхние 3 и нижние 4 вкладыши коренных подшипников не взаимозаменяемы. В верхнем вкладыше имеется отверстие для подвода масла и канавка для его распределения.
Оба вкладыша 4 нижней головки шатуна взаимозаменяемы. От проворачивания и бокового смещения вкладыши фиксируются выступами (усами), входящими в пазы, предусмотренные в постелях блока и шатуна, а также крышках подшипников.
Вкладыши имеют конструктивные отличия, направленные на повышение их работоспособности при форсировке двигателя турбонаддувом, при этом изменена маркировка вкладышей на 7405.1004058 (шатунные), 7405.1005170 и 7405.1005171 (коренные).
Не рекомендуется замена вкладышей при ремонте на серийные с маркировкой 740, так как при этом произойдет существенное сокращение ресурса двигателя.
Крышки коренных подшипников (рисунок 11) изготовлены из высокопрочного чугуна. Крепление крышек осуществляется с помощью вертикальных и горизонтальных стяжных болтов 3, 4, 5, которые затягиваются по определенной схеме с регламентированным моментом (приложение А).
Шатун (рисунок 9) стальной, кованный, стержень 1 имеет двутавровое сечение. Верхняя головка шатуна неразъемная, нижняя выполнена с прямым и плоским разъемом. Шатун окончательно обрабатывают в сборе с крышкой 2, поэтому крышки шатунов невзаимозаменяемы. В верхнюю головку шатуна запрессована стале-бронзовая втулка 3, а в нижнюю установлены сменные вкладыши 4. Крышка нижней головки шатуна крепится с помощью гаек 6, навернутых на болты 5, предварительно запрессованные в стержень шатуна. Затяжка шатунных болтов осуществляется по схеме, определенной в приложении А. На крышке и стержне шатуна нанесены метки спаренности – трехзначные порядковые номера. Кроме того на крышке шатуна выбит порядковый номер цилиндра.
Маховик (рисунок 12) закреплен десятью болтами 7 (рисунок 13), изготовленными из легированной стали, на заднем торце коленчатого вала и зафиксирован штифтом 10 (рисунок 13) на центрирующей шейке коленчатого вала 9 (рисунок 10). С целью исключения повреждения поверхности маховика, под головки болтов устанавливается шайба 6 (рисунок 13). Величина момента затяжки болтов крепления маховика указана в приложении А. На обработанную цилиндрическую поверхность маховика напрессован зубчатый обод 3 (рисунок 12), с которым входит в зацепление шестерня стартера при пуске двигателя. Под манжету уплотнения коленчатого вала устанавливается кольцо 1 с наружной хромированной поверхностью.
Маховик выполняется под одно- или двух-дисковое диафрагменные сцепления. Во внутреннюю расточку маховика установлен подшипник 5 первичного вала коробки передач.
При регулировках угла опережения впрыска топлива и тепловых зазоров в клапанах, маховик фиксируется фиксатором (рисунок 14).
Конструкция маховика Евро-2 имеет следующие отличия от маховиков двигателей КАМАЗ Евро-0 740.10 и 7403.10:
Перечисленные изменения делают несовместимыми маховики КАМАЗ Евро-2 с маховики двигателей Евро-1 740.10 и 7403.10.
Гаситель крутильных колебаний (рисунок 15) закреплен восемью болтами 2 (рисунок 16) на переднем носке коленчатого вала. Гаситель состоит из корпуса 1 (рисунок 15) в который установлен с зазором маховик гасителя 2. Снаружи корпус гасителя закрыт крышкой 3. Герметичность обеспечивается сваркой по стыку корпуса гасителя и крышки. Между корпусом гасителя и маховиком гасителя находится высоковязкая силиконовая жидкость, дозировано заправленная перед заваркой крышки. Центровка гасителя осуществляется шайбой 6, приваренной к корпусу.
Гашение крутильных колебаний коленчатого вала происходит путем торможения корпуса гасителя, закрепленного на носке коленчатого вала, относительно маховика в среде силиконовой жидкости. При этом энергия торможения выделяется в виде теплоты.
КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ при проведении ремонтных работ деформировать корпус и крышку гасителя. Гаситель с деформированным корпусом или крышкой к дальнейшей эксплуатации не пригоден.
После установки гасителя проверить наличие зазора между гасителем и противовесом.
Поршень 1 (рисунок 17) отлит из алюминиевого сплава со вставкой из износостойкого чугуна под верхнее компрессионное кольцо. В головке поршня выполнена тороидальная камера сгорания с вытеснителем в центральной части, которая смещена относительно оси поршня в сторону от выточек под клапаны на 5 мм.
Боковая поверхность представляет собой сложную овально-бочкообразную форму с занижением в зоне отверстий под поршневой палец. На юбку нанесено графитовое покрытие. В нижней ее части выполнен паз, исключающий, при правильной сборке, контакт поршня с форсункой охлаждения при нахождении в нижней мертвой точке.
Поршень комплектуется двумя компрессионными и одним маслосъемным кольцами. Отличительной его особенностью является уменьшенное расстояние от днища до нижнего торца верхней канавки, которое составляет 17 мм. На двигателе 740.30, 740.31 аналогично другим моделям двигателей КАМАЗ, с целью обеспечения топливной экономичности и экологических показателей, применен селективный подбор поршней для каждого цилиндра по расстоянию от оси поршневого пальца до днища. По указанному параметру поршни разбиты на четыре группы 10, 20, 30 и 40. Каждая последующая группа от предыдущей отличается на 0,11 мм.
Компрессионные кольца (рисунок 17) изготавливаются из высокопрочного, а маслосъемное из серого чугунов. Верхнее компрессионное кольцо имеет форму двухсторонней трапеции, с внутренней выборкой со стороны верхнего торца, а второе имеет форму односторонней трапеции. При монтаже торец с отметкой “верх” должен располагаться со стороны днища поршня.
Рабочая поверхность верхнего компрессионного кольца 4 покрыта молибденом и имеет бочкообразную форму. На рабочую поверхность второго компрессионного 5 и маслосъемного колец 2 нанесен хром. Ее форма на втором кольце представляет собой конус с уклоном к нижнему торцу, по этому характерному признаку кольцо получило название “минутное”. Минутные кольца применены для снижения расхода масла на угар, их установка в верхнюю канавку недопустима.
Маслосъемное кольцо коробчатого типа, высотой 4 мм, с пружинным расширителем, имеющим переменный шаг витков и шлифованную наружную поверхность. Средняя часть расширителя с меньшим шагом витков при установке на поршень должна располагаться в замке кольца.
Установка поршневых колец с других моделей двигателей КАМАЗ может привести к увеличению расхода масла на угар.
Форсунки охлаждения (рисунок 6) устанавливаются в картерной части блока цилиндров и обеспечивают подачу масла из главной масляной магистрали, при достижении в ней давления 80… 120 кПа (0,8…1,2 кг/см2), на внутреннюю полость поршней. На такое давление отрегулирован клапан, расположенный в каждой из форсунок.
Поршень с шатуном (рисунок 17) соединены пальцем 3 плавающего типа, его осевое перемещение ограничено стопорными кольцами 6. Палец изготовлен из хромоникелевой стали, диаметр отверстия 22 мм. Применение пальцев с отверстием 25 мм недопустимо, так как это нарушает балансировку двигателя.
Привод отбора мощности передний (рисунок 18) осуществляется с носка коленчатого вала через полумуфту отбора мощности 2, прикрепленную к носку коленчатого вала 13 восьмью специальными болтами M12x1,25. Центрирование полумуфты относительно коленчатого вала осуществляется по внутренней расточке выносного противовеса. Крутящий момент от полумуфты передается посредством вала привода агрегатов 1 и вала отбора мощности 3 на шкив 4. Вал отбора мощности 3 устанавливается на двух шариковых подшипниках 11 и 12. Уплотнение полости осуществляется манжетой 8. Для уменьшения износа шлицевых соединений, вал привода агрегатов удерживается от осевых перемещений пружиной 9.
Механизм газораспределения (рисунок 19) предназначен для обеспечения впуска в цилиндры свежего воздушного заряда и выпуска из них отработавших газов. Впускные и выпускные клапаны открываются и закрываются в определенных положениях поршня, что обеспечивается совмещением меток на шестернях привода агрегатов при их монтаже.
Механизм газораспределения – верхнеклапанный с нижним расположением распределительного вала. Кулачки распределительного вала 24 в соответствии с фазами газораспределения приводят в действие толкатели 23. Штанги 19 сообщают качательное движение коромыслам 16, а они, преодолевая сопротивление пружин 4 и 5, открывают клапаны 25. Закрываются клапаны под действием силы сжатых пружин.
Распределительный вал (рисунок 20) стальной, кулачки и опорные шейки подвергнуты термообработке ТВЧ; устанавливается в развале блока цилиндров на пяти подшипниках скольжения, представляющих собой стальные втулки, залитые антифрикционным сплавом. Диаметр втулок на 6 мм больше по сравнению со втулками двигателя 740.10.
Распределительный вал КАМАЗ Евро-2 увеличен в размерах, с измененными фазами газораспределения и ходом клапанов по сравнению с распределительным валом двигателя Евро-0 740.10. На задний конец распределительного вала напрессована прямозубая шестерня 3. Привод распределительного вала осуществляется от шестерни коленчатого вала через промежуточные шестерни. Для обеспечения заданных фаз газораспределения, шестерни при сборке устанавливаются по меткам выбитым на их торцах (см. рисунок 7). Шестерни стальные, штампованные с термо-обработанными зубьями. От осевого перемещения вал фиксируется корпусом 2 (рисунок 20) подшипника задней опоры, который крепится к блоку цилиндров гремя болтами. Посадочный диаметр корпуса подшипника задней опоры больше по сравнению с корпусом подшипника двигателя камаз евро-0 – 740.10.
Установка корпуса подшипника задней опоры двигателя 740.10 недопустима, так как приведет к аварийному снижению давления масла в системе и преждевременному выходу из строя двигателя.
Клапаны 25 (рисунок 19) из жаропрочной стали. Угол рабочей фаски клапанов 90°. Диаметр тарелки впускного клапана 51,6 мм, выпускного 46,6 мм, высота подъема впускного клапана – 14,2 мм, выпускного – 13,7 мм. Геометрия тарелок впускных и выпускных клапанов обеспечивает соответствующие газодинамические параметры впуска-выпуска газов и поэтому замена клапанов на клапана двигателя евро-0 740.10 не рекомендуется.
Клапаны перемещаются в направляющих втулках, изготовленных из металлокерамики. Для предотвращения попадания масла в цилиндр, на направляющие клапанов устанавливаются резиновые уплотнительные манжеты.
Толкатели 23 (рисунок 19) тарельчатого типа с профилированной направляющей частью, (в переходный период возможно цилиндрической). Изготовлены из стали с последующей наплавкой поверхности тарелки отбеленным чугуном. Толкатель подвергнут химико-термической обработке.
Направляющие толкателей прилитые к блоку цилиндров. В переходный период возможна установка привертных направляющих толкателей (с подрезкой болтов и резьбовых бобышек направляющей), как на двигателе 740.10. В этом случае установка направляющей толкателей двигателя 740.10 без специальной подрезки не допускается.
Штанги 19 (рисунок 19) толкателей стальные, пустотелые, с запрессованными наконечниками. Штанги на 3 мм короче штанг двигателя 740.10 и с ними невзаимозаменяемы.
Коромысла 16 (рисунок 19) клапанов стальные, штампованные, представляют собой двуплечий рычаг, у которого отношение большого плеча к меньшему составляет 1,55. Коромысла впускного и выпускного клапанов устанавливаются на общей стойке и фиксируются в осевом направлении пружинным фиксатором. Коромысла клапанов в отличие от коромысел двигателя 740.10 не имеют бронзовой втулки, вследствие чего с ними не взаимозаменяемы.
Стойка 17 (рисунок 19) коромысел чугунная, цапфы подвергнуты термической обработке ТВЧ. Диаметр цапф на 2 мм больше по сравнению с цапфами стойки коромысел двигателя 740.10.
Пружины 4 и 5 (рисунок 19) клапанов винтовые, устанавливаются по две на каждый клапан. Пружины имеют различные направления навивки. Диаметр проволоки наружной пружины – 4,8 мм, внутренней- 3,5 мм. Предварительно устанавливаемое усилие пружин 355 Н, суммарное рабочее 821 Н. Пружины взаимозаменяемы с пружинами двигателя 740.10.
Головки цилиндров 1 (рисунок 19) отдельные на каждый цилиндр, изготовлены из алюминиевого сплава, для охлаждения имеют полость сообщающуюся с полостью охлаждения блока. Днище головки усилено за счет увеличения толщины в зоне выпускного канала и дополнительного ребра по сравнению с головкой цилиндра двигателя камаз евро-0 740.10.
Каждая головка цилиндра устанавливается на два установочных штифта, запрессованные в блок цилиндров, и крепится четырьмя болтами из легированной стали. Один из установочных штифтов одновременно служит втулкой для подачи масла на смазку коромысел клапанов. Втулка уплотнена резиновыми кольцами. В головке увеличено отверстие слива моторного масла из-под клапанной крышки в штанговую полость.
Окна впускного и выпускного каналов расположены на противоположных сторонах головки цилиндров. Впускной канал имеет тангенциальный профиль для обеспечения оптимального вращательного движения воздушного заряда, определяющего параметры рабочего процесса двигателя и токсичность отработавших газов, поэтому замена на головки цилиндров 740.1003014-20 не допускается.
В головку запрессованы чугунные седла и металлокерамические направляющие втулки клапанов. Седла клапанов имеют увеличенный натяг в посадке по сравнению с седлами двигателя 740.10 и фиксируются острой кромкой. Выпускные седла и клапан профилированы для обеспечения меньшего сопротивления выпуску отработавших газов.
Применение выпускного клапана двигателя 740.10 не рекомендуется.
Стык “головка цилиндров – гильза” (газовый стык) – беспрокладочный (рисунок 21). В расточенную канавку на нижней плоскости головки запрессовано стальное уплотнительное кольцо 3. Посредством этого кольца головка цилиндра устанавливается на бурт гильзы. Герметичность уплотнения обеспечивается высокой точностью обработки сопрягаемых поверхностей уплотнительного кольца и гильзы цилиндра 5. Свинцовистое покрытие на поверхности кольца газового стыка дополнительно повышает герметичность за счет компенсации микронеровностей уплотняемых поверхностей. Для уменьшения вредных объемов в газовом стыке установлена фторопластовая прокладка-заполнитель 4. Прокладка-заполнитель фиксируется на кольце газового стыка за счет обратного конуса и посадки ее с натягом по выступающему пояску. Применение прокладки-заполнителя снижает удельный расход топлива и дымность отработавших газов.
Прокладка-заполнитель разового применения.
Для уплотнения перепускных каналов охлаждающей жидкости в отверстия днища головки установлены уплотнительные кольца 2 из силиконовой резины.
Пространство между головкой и блоком, отверстия стока моторного масла и штанговые отверстия уплотнены прокладкой головки цилиндра 7 (рисунок 20) из термостойкой резины. На прокладке дополнительно выполнены уплотнительные бурт втулки подачи масла и канавка слива масла в штанговые отверстия.
При сборке двигателя болты крепления головки цилиндра следует затягивать в три приема в последовательности указанной на рисунке 22.
Величина момента затяжки должна быть:
Перед ввертыванием резьбу болтов смазать тонким слоем графитовой смазки.
После затяжки болтов необходимо отрегулировать зазоры между клапанами и коромыслами. Зазор необходим для обеспечения герметичной посадки клапана на седло при тепловом расширении деталей во время работы двигателя.
Клапанный механизм закрыт алюминиевой крышкой 15 (рисунок 19). Для шумоизоляции и уплотнения стыка крышка – головка цилиндра применены резиновая уплотнительная прокладка 18 и виброизоляционная шайба 14.
Смазочная система двигателя комбинированная, с “мокрым” картером. Система включает масляный насос, фильтр очистки масла, водомасляный теплообменник, картер масляный, маслоналивную горловину, направляющую трубку и указатель уровня масла.
Различные комплектации двигателя могут отличаться формой картера масляного, расположением и глубиной копильника масла. Соответственно, масляный насос имеет различные маслозаборники. Двигатели могут оснащаться маслозаливной горловиной и указателем уровня масла расположенными в передней крышке или на картере маховика.
Показана на рисунке 23. Из картера 13 масляный насос 1 подает масло в фильтр очистки масла 3 и через водомасляный теплообменник 6 в главную магистраль, и далее к потребителям. В смазочную систему также включены клапан 2 системы, обеспечивающий давление в главной масляной магистрали 392…539 кПа (4,0… 5,5 кгс/см2) при номинальной частоте вращения коленчатого вала двигателя, перепускной клапан 4, отрегулированный на срабатывание при перепаде давления на фильтре 147.. .216 кПа (1,5…2,2 кгс/см2) и термоклапан 11 включения водомасляного теплообменника.
При температуре масла ниже 95 °С, клапан открыт и основной поток масла поступает в двигатель минуя теплообменник. При температуре масла более 110 °С, термоклапан закрыт и весь поток масла проходит через теплообменник, где охлаждается водой. Тем самым обеспечивается быстрый прогрев двигателя после запуска и поддержание оптимального температурного режима в процессе эксплуатации. Конструктивно термоклапан расположен в корпусе масляного фильтра.
Масляный насос (рисунок 24) закреплен на нижней плоскости блока цилиндров. Ведущее зубчатое колесо напрессовано на передний носок коленчатого вала и имеет 64 зуба, ведомое 52.
Зазор в зацеплении зубчатых колес привода регулируется прокладками, устанавливаемыми между привалочными плоскостями насоса и блока цилиндров и составляет 0,15…0,35 мм. Момент затяжки болтов крепления масляного насоса к блоку должен быть 49…68,6 Н м (5…7 кгс м).
Масляный насос шестеренчатый, односекционный. Содержит корпус 2, крышку 1, шестерни 3 и 7. В крышке расположен клапан смазочной системы 13, с пружиной 11, отрегулированный на давление срабатывания 392.. .439 кПа (4.. .4,5 кгс/см2). Также насос имеет предохранительный клапан выполненный в виде шарика 14 подпружиненного пружиной 12. Давление срабатывания клапана 833…882 кПа (8,5…9,5 кгс/см2).
Фильтр масляный (рисунок 25) закреплен на правой стороне блока цилиндров, состоит из корпуса 1, двух колпаков 9 и 11, в которых установлены полно-поточный 8 и частично-поточный 4 фильтро-элементы.
Колпаки на резьбе вворачиваются в корпус. Уплотнение колпаков в корпусе осуществляются кольцами 2 и 3.
В корпусе фильтра также расположен перепускной клапан 15 и термоклапан включения водомасляного теплообменника. Очистка масла в фильтре комбинированная. Через полнопоточный фильтро-элемент 8 проходит основной поток масла перед поступлением к потребителям, тонкость очистки масла от примесей, при этом, составляет 40 мкм. Через частично-поточный фильтро-элемент 4 проходит 3…5 л/мин, где удаляются примеси размерами более 5 мкм. Из частично-поточного элемента масло сливается в картер. При такой схеме достигается высокая степень очистки масла от примесей,
Термокланан (рисунок 25) включения водомасляного теплообменника состоит из подпружиненного поршня 13 с термосиловым датчиком 6. При температуре ниже 95 °С поршень 13 находится в верхнем положении и основная часть потока масла, минуя теплообменник, поступает в двигатель. При достижении температуры масла омывающего термосиловой датчик 6 (95+2) °С, активная масса, находящаяся в баллоне, начинает плавиться и, увеличиваясь в объеме, перемещает шток датчика и поршень 13.
При температуре масла (110+2) °С поршень 13 разобщает полости в фильтре до и после теплообменника и весь поток масла идет через теплообменник.
При превышении температуры масла выше 115 °С срабатывает датчик температуры и на щитке приборов загорится сигнальная лампочка.
Водомасляный теплообменник 5 (рисунок 25) установлен на масляном фильтре, кожухо-трубного типа, сборный. Внутри трубок проходит охлаждающая жидкость из системы охлаждения двигателя, снаружи масло. Со стороны масла трубки имеют оребрение в виде охлаждающих пластин. Поток масла в теплообменнике четыре раза пересекает трубки с водой, чем достигается высокая эффективность охлаждения масла.
Картер масляный 13 (рисунок 23) штампованный, крепится к блоку цилиндров через резино-пробковую прокладку. Момент затяжки болтов крепления масляного картера 14…17,8 Н м (1,4…1,8 кгс м).
Система вентиляции картера (рисунок 26) открытая, циклонного типа. Картерные газы отводятся из штанговой полости второго цилиндра, через угольник 1, в котором установлен завихритель 2. При работе двигателя картерные газы проходят через завихритель 2 и получают винтовое движение. За счет действия центробежных сил капли масла, содержащиеся в газах, отбрасываются к стенке грубы 4 и через трубку 6 сливаются обратно в картер. Очищенные картерные газы выбрасываются в атмосферу.
Система питания двигателя воздухом состоит из фильтра, уплотнителя, воздухозаборника, патрубков и труб, соединяющих воздухозаборник и воздухоочиститель с турбокомпрессорами. Ее конструкция определяется конфигурацией автомобиля.
Фильтр воздушный (рисунок 27) сухого типа, двухступенчатый, предназначен для очистки поступающего в двигатель воздуха от пыли. Он состоит из корпуса 3 с завихрителем 4, крышки 8, предочистителя 1, фильтрующего элемента 2. Герметичность соединения крышки с корпусом обеспечивает уплотнительное кольцо 5. Крышка крепится к корпусу четырьмя пружинными защелками 6. Основные детали фильтра изготовлены из листовой стали толщиной 1,2 мм. Для повышения эффективности очистки воздуха, поступающего в двигатель, на фильтрующий элемент надевается предочистигель 1 – оболочка из нетканого фильтровального полотна.
Очистка воздуха в фильтре двухступенчатая.
Первая ступень очистки – моноциклон, содержащий завихритель 4 установленный за входным патрубком и обеспечивающий винтовое движение воздушного потока в кольцевом зазоре между корпусом фильтра и элементом 2. За счет действия центробежных сил частицы пыли отбрасываются к стенке корпуса и сгоняются в бункер. Пылесборный бункер образован крышкой 8, перегородкой 7 и съемной заглушкой 9.
Вторая ступень очистки – элемент фильтрующий 2, который имеет наружный и внутренний кожухи. Они изготовлены из перфорированного стального листа и гофрированной фильтровальной бумаги, соединенных по торцам металлическими крышками, которые приклеены специальным клеем.
Фильтрующий элемент плотно прижат к днищу корпуса 3 и уплотняется торцовым резиновым кольцом. Крепится фильтрующий элемент в корпусе самостопорящейся гайкой 10.
Предварительно очищенный в первой ступени воздух поступает во вторую ступень со сменным картонным фильтрующим элементом для более тонкой очистки, где, проникая через поры картона, оставляет на его поверхности мелкие частицы пыли. Очищенный воздух через тройник поступает к двум центробежным компрессорам и, под избыточным давлением, через трубу охладителя наддувочного воздуха в цилиндры двигателя.
В системе питания двигателя воздухом предусмотрена установка ИНДИКАТОРА ЗАСОРЕННОСТИ фильтрующего элемента. Если срабатывает индикатор засоренности то необходимо провести обслуживание или замену фильтро-элемента воздушного фильтра.
Система турбонаддува за счет использования части энергии отработавших газов, обеспечивает подачу предварительно сжатого и охлажденного воздуха в цилиндры двигателя.
Система газотурбинного наддува двигателя (рисунок 28) состоит из двух взаимозаменяемых турбокомпрессоров (ТКР), выпускных и впускных коллекторов и патрубков, охладителя наддувочного воздуха (ОНВ) типа “воздух-воздух”, подводящих и отводящих трубопроводов.
Воздух в центробежный компрессор турбокомпрессора поступает из воздухоочистителя, сжимается и подается под давлением в ОНВ, и затем охлажденный воздух поступает в двигатель.
Турбокомпрессоры устанавливаются на выпускных патрубках по одному на каждый ряд цилиндров. Выпускные коллекторы и патрубки изготовлены из высокопрочного чугуна. Уплотнение газовых стыков между установочными фланцами турбины турбокомпрессоров, выпускных патрубков и коллекторов осуществляется прокладками из жаростойкой стали. Прокладки являются деталями одноразового использования и при переборках системы подлежат замене. Газовый стык между выпускным коллектором и головкой цилиндра уплотняется прокладкой из асбо-стального листа, окантованного металлической плакированной лентой.
Выпускные коллекторы выполняются цельнолитыми и крепятся к головкам цилиндров болтами и контрятся замковыми шайбами. Для компенсации угловых перемещений, возникающих при нагреве, под головки болтов крепления выпускного коллектора устанавливаются специальные сферические шайбы.
Система турбонаддува и охлаждения наддувочного воздуха двигателя должна быть герметична. Негерметичность системы приводит к увеличению тепло-напряженности деталей, снижению мощности и ресурса двигателя.
Кроме того, негерметичность впускного тракта приводит к “пылевому” износу цилиндро-поршневой группы и преждевременному выходу двигателя из строя.
Смазка подшипников турбокомпрессоров осуществляется от системы смазки двигателя через фторопластовые трубки с металлической оплеткой. Слив масла из турбокомпрессоров осуществляется через стальные трубки в картер двигателя.
На двигателе устанавливается два турбокомпрессора ТКР 7С-6. Вместо турбокомпрессора ТКР 7С-6 могут устанавливаться турбокомпрессоры S2B/7624TAE/0,76D9 фирмы “Schwitzer”. Технические характеристики турбокомпрессоров приведены в таблице 2.
Характеристика |
Параметры турбокомпрессоров |
|
ТКР 7С-6 |
S2B/7624TAE/0,76D9 |
|
Диапазон подачи воздуха через компрессор, кг/сек |
0,05…0,22 |
0,05…0,22 |
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см2), не менее |
98 ( 1,0) |
98 ( 1,0) |
Частота вращения ротора при номинальной мощности двигателя, мин-1 |
95000 |
95000 |
Температура газов на входе в турбину, К (°С): – допускаемая в течении 1 час; – допускаемая без ограничения во времени |
1023 ( 750) 973 ( 700 ) |
1023 (750 ) 973 ( 700 ) |
Давление масла на входе в турбокомпрессор, при температуре масла 80…98 °С, кПа (кгс/см2): – при частоте вращения коленчатого вала 2200 мин-1 – при частоте вращения коленчатого вала 600 мин-1, не менее |
294…441 (3,0…4,5) 98 ( 1,0) |
294…441 (3,0…4,5) 98 ( 1,0) |
Система охлаждения предназначена для обеспечения оптимального теплового режима работы двигателя. Система охлаждения двигателя жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости (ОЖ).
К основным агрегатам и узлам системы охлаждения относятся: радиатор, вентилятор с вязкостной или гидравлической муфтой привода, кожух вентилятора, обечайка вентилятора, корпус водяных каналов, водяной насос, термостаты, каналы и соединительные трубопроводы для прохода ОЖ.
Схема системы охлаждения с соосным коленчатому валу вентилятором и с вязкостной муфтой привода вентилятора приведена на рисунке 30.
Во время работы двигателя циркуляция ОЖ в системе создается водяным насосом 8. Охлаждающая жидкость из насоса 8 нагнетается в полость охлаждения левого ряда цилиндров через канал 9 и через канал 14 – в полость охлаждения правого ряда цилиндров. Омывая наружные поверхности гильз цилиндров, ОЖ через отверстия в верхних привалочных плоскостях блока цилиндров поступает в полости охлаждения головок цилиндров. Из головок цилиндров нагретая жидкость по каналам 4, 5 и 6 поступает в водяную коробку корпуса водяных каналов 17, из которой, в зависимости от температуры, направляется в радиатор или на вход насоса. Часть жидкости отводится по каналу 15 в масляный теплообменник 16, где происходит передача тепла от масла в ОЖ. Из теплообменника ОЖ направляется в водяную рубашку блока цилиндров в зоне расположения четвертого цилиндра.
Номинальная температура охлаждающей жидкости в системе при работе двигателя 75…98 °С. Тепловой режим двигателя регулируется автоматически: двумя термостатами и вязкостной муфтой привода вентилятора, которые управляют направлением потока жидкости и работой вентилятора в зависимости от температуры ОЖ на выходе из двигателя и температуры воздуха на выходе из радиатора.
Корпус водяных каналов (рисунок 30) отлит из чугунного сплава и закреплен болтами на переднем торце блока цилиндров.
В корпусе водяных каналов отлиты входная 7 и выходная 11 полости водяного насоса, соединительные каналы 5 и 12, каналы 9 и 14, подводящие ОЖ в блок цилиндров, каналы 4 и 6, отводящие ОЖ из головок цилиндров, перепускной канал 13, канал 15 отвода ОЖ в масляный теплообменник, полости водяной коробки 17 для установки термостатов, канал 10 подвода ОЖ в водяной насос из радиатора.
Водяной насос (рисунок 31) центробежного типа, установлен на корпусе водяных каналов. В корпус 1 запрессован радиальный двухрядный шарико-роликовый подшипник с валиком 6. С обеих сторон горцы подшипника защищены резиновыми уплотнениями. Смазка в подшипник заложена заводом-изготовителем. Пополнение смазки в эксплуатации не требуется. Упорное кольцо 8 препятствует перемещению наружной обоймы подшипника в осевом направлении. На концы валика подшипника напрессованы крыльчатка 3 и шкив 7. Сальник 2 запрессован в корпус насоса, а его кольцо скольжения постоянно прижато пружиной к кольцу скольжения 5, которое вставлено в крыльчатку через резиновую манжету 4.
В корпусе насоса между подшипником и сальником выполнено два отверстия: нижнее и верхнее. Верхнее отверстие служит для вентиляции полости между подшипником и сальником, а нижнее – для контроля исправности торцового уплотнения.
Сальник водяного насоса (рисунок 32) состоит из латунного наружного корпуса 1, в который вставлена резиновая манжета 2. Внутри манжеты размещена пружина 3 с внутренним 4 и наружным 5 каркасами. Пружина поджимает кольцо скольжения 6. Кольцо скольжения изготовлено из графито-свинцового твердо-прессованного антифрикционного материала.
Девяти лопастной вентилятор 1 диаметром 660 мм изготовлен из стеклонаполненного полиамида, ступица вентилятора 3 – металлическая.
Для привода вентилятора применяется автоматически включаемая муфта 2 вязкостного типа, которая кренится к ступице вентилятора 3.
Принцип работы муфты основан на вязкостном трении жидкости в небольших зазорах между ведомой и ведущей частями муфты. В качестве рабочей жидкости используется силиконовая жидкость с высокой вязкостью.
Муфта неразборная и не требует технического обслуживания в эксплуатации.
Включение муфты происходит при повышении температуры воздуха на выходе из радиатора до 61.. .67 °С. Управляет работой муфты термо-биметаллическая спираль 4.
Вентилятор размещен в неподвижной кольцевой обечайке, жестко прикрепленной к двигателю. Кожух вентилятора, обечайка вентилятора способствуют увеличению расхода потока воздуха нагнетаемого вентилятором через радиатор. Кожух вентилятора и обечайка вентилятора соединены кольцевым резиновым уплотнителем П-образного сечения.
Радиатор медно-паяный, для повышения теплоотдачи охлаждающие ленты выполнены с жалюзийными просечками, крепится боковыми кронштейнами через резиновые подушки к лонжеронам рамы, а нижней тягой к первой поперечине рамы.
Термостаты (рисунок 34) позволяют ускорить прогрев холодного двигателя и поддерживать температуру ОЖ не ниже 75 °С путем изменения ее расхода через радиатор. В водяной коробке 5 корпуса водяных каналов установлено параллельно два термостата с температурой начала открытия (80±2) °С.
При температуре ОЖ ниже 80 °С, основной клапан 12 прижимается к седлу корпуса 14 пружиной 11 и перекрывает проход ОЖ в радиатор. Перепускной клапан 6 открыт и соединяет водяную коробку корпуса водяных каналов по перепускному каналу 4 с входом водяного насоса.
При температуре ОЖ выше 80 °С, наполнитель 9, находящийся в баллоне 10, начинает плавиться, увеличиваясь в объеме. Наполнитель состоит из смеси 60 % церезина (нефтяного воска) и 40 % алюминиевой пудры. Давление от расширяющегося наполнителя через резиновую вставку 8 передается на поршень 13, который, выдавливаясь наружу, перемещает баллон: 10 с основным клапаном 12, сжимая пружину 11. Между корпусом 14 и клапаном 12 открывается кольцевой проход для ОЖ в радиатор. При температуре ОЖ 93 °С происходит полное открытие термостата, клапан поднимается на высоту не менее 8,5 мм.
Одновременно с открытием основного клапана вместе с баллоном перемещается перепускной клапан 6, который перекрывает отверстие в водяной коробке корпуса водяных каналов, соединяющее ее с входом водяного насоса.
При понижении температуры ОЖ до 80 °С и ниже, под действием пружин 7 и 11 происходит возврат клапанов 12 и 6 в исходное положение.
Расширительный бачок 1 (рисунок 30) установлен на двигателе автомобилей КАМАЗ с правой стороны по ходу автомобиля. Расширительный бачок соединен перепускной трубой 19 с входной полостью водяного насоса 13, пароотводящей трубкой 2 с верхним бачком радиатора и с трубкой отвода жидкости из компрессора 3.
Расширительный бачок служит для компенсации изменения объема ОЖ при ее расширении от нагрева, а также позволяет контролировать степень заполнения системы охлаждения и способствует удалению из нее воздуха и пара. Расширительный бачок изготовлен из полупрозрачного сополимера пропилена. На горловину бачка навинчивается пробка расширительного бачка (рисунок 35) с клапанами впускным 6 (воздушным) и выпускным (паровым). Выпускной и впускной клапаны объединены в блок клапанов 8. Блок клапанов неразборный. Выпускной клапан, нагруженный пружиной 3, поддерживает в системе охлаждения избыточное давление 65 кПа (0,65 кгс/см ), впускной клапан 6, нагруженный более слабой пружиной 5, препятствует созданию в системе разряжения при остывании двигателя.
Впускной клапан открывается и сообщает систему охлаждения с окружающей средой при разряжении в системе охлаждения 1…13 кПа (0,01…0,13 кгс/см2).
Заправка двигателя ОЖ производится через заливную горловину расширительного бачка. Перед заполнением системы охлаждения надо предварительно открыть кран системы отопления.
Для слива ОЖ следует открыть сливные краны нижнего колена водяного трубопровода, теплообменника и насосного агрегата предпускового подогревателя, и отвернуть пробку расширительного бачка.
Для капотных автомобилей двигатель может комплектоваться гидромуфтой привода вентилятора, расположенной на 325 мм выше оси коленчатого вала. Схема работы системы аналогична описанной выше, конструктивные особенности такой комплектации двигателя и его узлов видны на рисунках 4, 37, 38, 39, 40.
Гидромуфта привода вентилятора (рисунок 37) Для поддержания оптимального теплового режима двигателя и экономии топлива, привод вентилятора осуществляется через гидромуфту, включение и выключение которой происходит автоматически в зависимости от температуры жидкости в системе охлаждения двигателя.
Частота вращения вентилятора зависит от количества масла, поступающего в гидромуфту через включатель (рисунок 38). Он установлен в передней части двигателя на патрубке, подводящем охлаждающую жидкость к правому ряду цилиндров.
Тягой 5 пробка 9 может быть установлена в трех положениях, обозначенных метками на корпусе:
При повышении температуры охлаждающей жидкости до 85…90°С шток 12 термо-силового клапана 11 перемещает шарик 10. Через сообщающиеся полости включателя масло подводится в полость гидромуфты. Далее через каналы в ведущем валу масло поступает в меж-лопастное пространство и включает вентилятор, масло из рабочих полостей колес сливается через отверстия в кожухе.
При понижении температуры охлаждающей жидкости ниже 85 °С шарик 10 под действием возвратной пружины 3 перекрывает отверстие в клапане 11 и отключает вентилятор. Благодаря этому, поддерживается наивыгоднейшая температура двигателя, а затраты мощности на привод вентилятора снижаются.
При отказе включателя гидромуфты во время работы в автоматическом режиме (характеризуется перегревом двигателя) принудительно включить вентилятор, установив пробку 9 в положение “П” и при первой возможности устранить неисправность включателя.
Водяной насос, применяемый на двигателях с гидромуфтой, ( рисунок 39 ) центробежного типа, установлен на передней части блока цилиндров слева.
Вал 10 вращается в подшипниках 3 и 4 с односторонним резиновым уплотнением. Для дополнительной защиты от проникновения охлаждающей жидкости в подшипники установлена резиновая манжета 11.
Сальник 7 препятствует вытеканию охлаждающей жидкости из полости насоса. Сальник запрессован в корпус 5 насоса, а его графитовое кольцо постоянно прижато пружиной к упорному стальному кольцу 8. Между упорным кольцом и крыльчаткой 6 установлено уплотнительное резиновое кольцо 9 в тонкостенной латунной обойме. Высокое качество изготовления торцов графитового и упорного кольца обеспечивает надежное контактное уплотнение полости насоса.
Полость между подшипниками заполнена смазкой “Литол -24”, которую при эксплуатации периодически (при ТО-2) следует пополнять с помощью пресс – масленки до появления ее из контрольного отверстия.
Для проверки исправности торцового уплотнения в корпусе насоса имеется дренажное отверстие. Заметная течь жидкости через это отверстие свидетельствует о неисправности уплотнения насоса. Закупорка отверстия не допускается, так как приводит к выходу из строя подшипников.
Вентилятор осевого типа, металлический, 8-лопастный, диаметром 660 мм крепится четырьмя болтами к ступице вентилятора 1 ведомого вала гидромуфты (рисунок 37).
Регулировка натяжения поликлинового ремня для двигателей с расположением вентилятора выше оси коленчатого вала показано на рисунке 40.
Натяжение ремня привода гидромуфты 11 регулируется перемещением натяжного ролика 6.
Натяжения ремня 10 привода генератора и водяного насоса выполнить следующим образом:
После регулировки проверить натяжение:
При приложении усилия F=(44,1 ± 5)Н ((4,5 ± 0,5)кгс) на середину ветви АБ ремня величина прогиба L должна быть 6 -10 мм.
Регулировка натяжения поликлинового ремня для двигателей 740.30-260 автобусной комплектации (рисунок 41) проводить с помощью изменения положения генератора 1 в следующей последовательности:
После регулировки проверить натяжение:
Система питания топливом обеспечивает фильтрацию топлива и равномерное распределение его по цилиндрам двигателя дозированными порциями в строго определенные моменты.
На двигателе применена система питания топливом разделенного типа, состоящая из топливного бака, топливопроводов низкого давления, фильтров грубой и тонкой очистки топлива, топливо-прокачивающего и топливоподкачивающего насосов, топливного насоса высокого давления (ТНВД) с электромагнитом останова, топливопроводов высокого давления, форсунок, электромагнитного клапана и штифтовых свечей электро-факелыюго устройства (ЭФУ).
Топливный бак, фильтр грубой очистки топлива и топливопрокачивающий насос должны быть установлены на изделии, на котором применяется двигатель, все остальные элементы системы питания установлены непосредственно на двигателе.
Топливо из топливного бака 26 через фильтр грубой очистки 29 и топливо-прокачивающий насос 30 подаётся топливоподкачивающим насосом 18, по топливной трубке 13 в фильтр тонкой очистки 16. Из фильтра тонкой очистки, по топливной трубке низкого давления 14 топливо поступает в ТНВД 21, который в соответствии с порядком работы цилиндров распределяет топливо по топливопроводам 1-8 высокого давления к форсункам 10. Форсунки впрыскивают топливо в камеры сгорания. Избыточное топливо, а вместе с ним попавший в систему воздух через перепускной клапан 24 и клапан 23 отводится в топливный бак.
Форсунка типа 273 закрытой конструкции, с пятью распыливающими отверстиями и гидравлическим управлением подъема иглы распылителя показана на рисунке 43. Все детали форсунки собраны в корпусе 6. К нижнему торцу корпуса форсунки гайкой 2 через проставку 3 прижат корпус 1 распылителя, внутри которого находится игла 12. Корпус и игла распылителя составляют прецизионную пару. Угловая фиксация корпуса распылителя относительно проставки и проставки относительно корпуса форсунки осуществлена штифтами 4. На верхний конец иглы распылителя через штангу 5 оказывает давление пружина 11. Необходимое натяжение этой пружины осуществляется набором регулировочных шайб 9, 10, устанавливаемых между пружиной и торцом внутренней полости корпуса форсунки.
Топливо к форсунке подается под высоким давлением через штуцер 8 со встроенным в него щелевым фильтром 13, далее по каналам корпуса 6, проставки 3 и корпуса распылителя 1 – в полость между корпусом распылителя и иглой 12 и, поднимая её, впрыскивается в цилиндр двигателя.
Просочившееся через зазор между иглой и корпусом распылителя топливо отводится по каналам в корпусе форсунки и сливается в бак через дренажные трубки 9 и 11, показанные на рисунке 42. Форсунка установлена в головке цилиндра, зафиксирована скобами, которые закреплены гайкой. Торец гайки распылителя уплотнен от прорыва газов гофрированной медной прокладкой. Уплотнительное кольцо 7 (рисунок 43) предохраняет от попадания пыли и жидкостей полость между форсункой и головкой цилиндра.
ВНИМАНИЕ!
Проверку и регулировку форсунок, а также замену распылителей необходимо проводить в специализированной мастерской.
Категорически запрещается установка форсунок других моделей, кроме указанных в инструкции, ввиду возможности выхода из строя двигателя.
Топливный насос высокого давления (рисунок 44), предназначен для подачи в цилиндры двигателя в определенные моменты строго дозированных порций топлива под высоким давлением.
На двигатель автомобильной комплектации устанавливается ТНВД модели 337-20 со всережимным регулятором.
На двигатель автобусной комплектации устанавливается ТНВД модели 337-71 с двухрежимным регулятором.
Диаметр плунжера ТНВД – 11 мм, ход плунжера – 13 мм, нагнетательный клапан – грибковый, перьевой диаметром 7 мм без разгрузки.
В корпусе ТНВД 1 установлены восемь секций, состоящих из корпуса 6, втулки плунжера 8, плунжера 7, поворотной втулки 4, нагнетательного клапана 11 с седлом 10, прижатым к втулке плунжера штуцером 12. Плунжер совершает возвратно-поступательное движение под действием кулачка вала 46 и пружины 3 толкателя. Толкатель 2 от проворачивания в корпусе зафиксирован сухарём 14. Кулачковый вал вращается в роликовых подшипниках 45. Наружные обоймы подшипников установлены в запрессованные в корпус насоса стальные кольца. От осевого перемещения кулачковый вал зафиксирован крышками. Натяг подшипников кулачкового вала регулируется прокладками 44 и должен составлять 0,05…0,15 мм.
Для изменения подачи топлива плунжер 7 поворачивается с помощью втулки 4, соединенной через ось поводка с рейкой 5 насоса. Рейка перемещается в направляющих втулках 40. Отверстия под направляющие втулки в корпусе ТНВД со стороны привода закрыты пробками 39. С противоположной стороны насоса на задней крышке 20 регулятора расположен корректор подачи топлива по давлению наддувочного воздуха 24.
На переднем торце корпуса, в месте выхода топлива из насоса, установлен перепускной клапан 38, который обеспечивает давление перед впускными отверстиями плунжеров на рабочих режимах 0,13…0,19 МПа (1,3… 1,9 кгс/см). Смазывание насоса циркуляционное, под давлением от общей смазочной системы двигателя.
Регулятор частоты вращения ТНВД мод. 337-20 (рисунок 45) всережимный, прямого действия, изменяет количество топлива, подаваемого в цилиндры в зависимости от нагрузки, поддерживая заданную частоту вращения коленчатого вала.
Регулятор установлен в развале корпуса ТНВД, На кулачковом валу насоса установлена шестерня регулятора ведущая 16 (рисунок 44), вращение которой передается через резиновые сухари 17. Ведомая шестерня выполнена заодно с державкой 28 грузов, вращающейся на двух шариковых подшипниках. При вращении державки грузы 31, качающиеся на осях 29, под действием центробежных сил расходятся и через упорный подшипник 30 перемещают муфту 32 регулятора, которая, упираясь в палец 34, в свою очередь, перемещает рычаги 2, 8 и 9 регулятора (рисунок 45), преодолевая усилие пружины 5. Рычаг 2 через штифт соединен с правой рейкой 3 топливного насоса. Правая рейка через рычаг реек 7 связана с левой рейкой 11.
Схема работы регулятора частоты вращения показана на рисунке 46.
Рычаг 16 управления регулятором жестко связан с рычагом 12. К рычагу 12 присоединена пружина 13 регулятора, а к рычагам 14 и 11 – стартовая пружина 15.
Во время работы регулятора центробежные силы грузов уравновешены усилием пружины 13. При увеличении частоты вращения коленчатого вала грузы, преодолевая сопротивление пружины 13, перемещают рычаги 2, 4 и 9, а вместе с ними и рейки ТНВД – подача топлива уменьшается. При понижении частоты вращения коленчатого вала центробежная сила грузов уменьшается, и рычаги с рейкой ТНВД под действием усилия пружины перемещаются в обратном направлении – подача топлива и частота вращения коленчатого вала увеличиваются.
При упоре рычага 9 регулятора в болт 6 и частоте вращения коленчатого вала менее 1800 мин-1 пружина 10 прямого корректора перемещает рейки насоса (через рычаги 2 и 4) в сторону увеличения подачи топлива, обеспечивая требуемую величину максимального крутящего момента двигателя.
Пружина 3 обратного корректора при частоте вращения менее 1400 мин-1 перемещает рычаг 4 с рейками в сторону уменьшения подачи топлива, ограничивая максимальную дымность отработавших газов двигателя.
Подача топлива прекращается поворотом рычага 3 (рисунок 47) останова двигателя до упора в болт 5. Поворот рычага осуществляется усилием встроенной в электромагнит останова двигателя 6 пружины при отключении удерживающей обмотки электромагнита от источника питания (ключ замка выключателя приборов и стартера в фиксированном положении «0»). При этом рычаг 3, преодолев усилия пружин 33 (рисунок 44) и 5 (рисунок 45), через штифт 14 повернет рычаги 2, 9 и 8, рейки переместятся до полного прекращения подачи топлива.
При повороте ключа замка выключателя приборов и стартера в фиксированное положение «I» подается питание на удерживающую обмотку электромагнита останова, а при дальнейшем повороте ключа в нефиксированное положение «II» питание подается и на втягивающую обмотку электромагнита, шток электромагнита, преодолевая усилие собственной пружины, выдвигается и освобождает рычаг 3 (рисунок 47). Рычаг 3 под действием пружины 33 (рисунок 44) возвращается в рабочее положение, а стартовая пружина 6 (рисунок 45) через рычаг реек 7 вернет рейки ТНВД в положение, соответствующее максимальной подаче топлива, необходимой для пуска двигателя. При переводе ключа замка выключателя приборов и стартера из нефиксированного положения «II» в фиксированное положение «I» втягивающая обмотка электромагнита отключается от источника питания и шток электромагнита останова остается в рабочем положении только за счет удерживающей обмотки.
ВНИМАНИЕ! Проверку и регулировку ТНВД, а также замену плунжерных пар, уплотнительных колец секций ТНВД необходимо проводить в специализированной мастерской квалифицированным специалистом.
=
Корректор по давлению наддувочного воздуха уменьшает подачу топлива при снижении давления наддувочного воздуха ниже 40…45 кПа (0,4…0,45 кгс/см ), тем самым осуществляя тепловую защиту двигателя и ограничивая дымность отработавших газов. В корпусе корректора 1 установлен поршень 26 с золотником 2. На поршень действует пружина 27, зафиксированная тарелкой 25 и кольцом 3. В поршень завернута и законтрена гайкой 28 шпилька 29 с наконечником 31, являющимся номинальным упором в регуляторе. Наконечник контрится гайкой 30. На золотник 2 действует пружина 7, предварительное натяжение которой может меняться регулировочным винтом 11.
К корпусу корректора 1 через прокладку 4 прикреплен корпус мембраны 8. В него установлен узел мембраны со штоком (детали 24, 16, 17, 23, 22, 19, 18). Мембрана зажата между корпусом 8 и крышкой 21. В корпусе мембраны 8 на оси рычага 13 установлен рычаг корректора 12, поворот которого ограничен регулировочным винтом 15.
Корректор подачи топлива не прямого действия; при изменении давления наддувочного воздуха в полости мембраны меняется положение золотника, который, в свою очередь, определяет положение поршня корректора.
В полость «А» между корпусом корректора 1 и поршнем 26 через резьбовое отверстие и жиклер 0,7 мм в корпусе корректора (на рисунке не показаны) подается масло под давлением из системы смазки двигателя. Поршень под действием этого давления, сжимая пружину 27, перемещается влево до тех пор, пока не откроются окна в поршне и золотнике и масло не пойдет на слив. При этом устанавливается постоянный расход масла через корректор. При изменении положения золотника поршень перемещается вслед за ним (следящая система).
Через резьбовое отверстие крышки 21 в полость мембраны подводится воздух из впускного коллектора двигателя. При снижении давления воздуха ниже 0,04 МПа (0,4 кгс/см ) усилие пружины корректора 7, действующей на золотник становится больше усилия, создаваемого давлением наддувочного воздуха на мембрану и передающегося через шток мембраны и рычаг корректора также на золотник. Золотник перемещается вправо до тех пор. пока не наступит равновесие сил, действующих на него. Вслед за золотником перемещается вправо и поршень со шпилькой 29 и наконечником 31, передвигая вправо упирающийся в него рычаг регулятора 8 (рисунок 45). Вслед за рычагом регулятора, под действием центробежных сил грузов, движутся рычаги 9, 2 и 7 с рейками насоса в сторону уменьшения подачи топлива.
Корректор имеет две внешние регулировки – винты 11 и 15 (рисунок 48). Винтом 11 изменяется предварительное натяжение пружины корректора 7, при этом меняется начало срабатывания корректора. Если необходимо увеличить значение давления наддувочного воздуха, при котором начинает срабатывать корректор, то винт 11 заворачивают, увеличивая предварительное натяжение пружины 7.
Винтом 15 регулируется номинальная цикловая подача топлива. При выворачивании винта 15 подача топлива увеличивается.
Если возникла необходимость в снятии корректора, то предварительно необходимо замерить выступание наконечника шпильки 31 относительно заднего торца корпуса ТНВД, а после установки корректора на место восстановить величину этого выступания и законтрить наконечник гайкой 30.
Показан на рисунке 49. Состоит из вала привода ТНВД 6 с пакетами передних 7 и задних 8 компенсирующих пластин, полумуфты ведомой 2, фланца ведомой полумуфты 3, фланца центрирующего 4, полумуфты ведущей 9 и центрирующих втулок 5. Каждый пакет компенсирующих пластин состоит из 5-ти пластин толщиной 0,5 мм каждая.
ВНИМАНИЕ! Все болты в приводе ТНВД должны быть класса прочности R100 и затягиваться моментом 65..75 Н м (6,5…7,5 кгс м). Затяжку всех болтов необходимо проконтролировать динамометрическим ключом. Перед установкой болтов проверить наличие центрирующих втулок. Деформация (изгиб) передних и задних компенсирующих пластин не допускается. Стяжной болт 10 ведущей полумуфты должен затягиваться в последнюю очередь.
Показан на рисунке 50. Он предназначен для окончательной очистки топлива от мелких частиц перед поступлением в ТНВД. Фильтр установлен в самой высокой точке системы питания топливом для сбора и удаления в бак воздуха вместе с частью топлива через клапан (рисунок 51), установленный на перепуске из фильтра
ВНИМАНИЕ! При замене фильтрующих элементов необходимо строго соблюдать правила обслуживания системы питания топливом. Не допускайте попадания загрязнений в систему и применяйте фильтрующие элементы только следующих моделей 740.1117040-01, 740.1117040-02, 740.1117040-04.
Представлен на рисунке 51. При достижении давления в полости “А” подвода топлива 25.. .45 кПа (0,25…0,45 кгс/см ), происходит перемещение шарика 4 и перетекание топлива из полости “А” в полость “Б” через жиклер 5 клапана. При давлении 200…240 кПа (2. .2,4 кгс/см2) обеспечивается полное открытие клапана и перепуск топлива в топливный бак через полость “Б“.
Насос топливоподкачивающий
Насос 13 (рисунок 44) поршневого типа предназначен для подачи топлива от бака через фильтры грубой и тонкой очистки и топливопрокачивающий насос к впускной полости ТНВД.
Насос установлен на задней крышке регулятора, привод его осуществляется от эксцентрика 19, расположенного на заднем конце кулачкового вала ТНВД . В корпусе насоса размещены поршень, пружина поршня, втулка штока 47 и шток 48 толкателя, впускной и нагнетательный клапаны с пружинами. Эксцентрик 19 через ролик 49, толкатель 15 и шток 48 сообщает поршню топливоподкачивающего насоса возвратно-поступательное движение.
Схема работы насоса показана на рисунке 52. При опускании толкателя 9 поршень 1 под действием пружины 4 движется вниз. В полости «А» создается разрежение и впускной клапан 2, сжимая пружину 3, пропускает топливо в полость «А». Одновременно топливо, находящееся в нагнетательной полости «В», вытесняется в магистраль «Г», при этом клапан 5 под действием пружины 6 закрывается, исключая перетекание топлива из полости «В» в полость «А».
При движении поршня 1 вверх, топливо, заполняющее полость «А», через нагнетательный клапан 5 поступает в полость «В» под поршнем, при этом впускной клапан закрывается. При повышении давления в нагнетательной магистрали поршень не совершает полного хода вслед за толкателем, а остается в положении, которое определяется равновесием силы давления топлива с одной стороны и усилия пружины – с другой.
Насос топливопрокачивающий 10 (рисунок 52) поршневого типа служит для заполнения топливной системы топливом перед пуском двигателя и удаления из нее воздуха.
Насос состоит из корпуса, поршня, цилиндра, впускного и нагнетательного клапанов.
Топливную систему следует прокачивать при помощи поршня насоса, предварительно расстопорив его поворотом против часовой стрелки.
При движении поршня 11 вверх в пространстве под ним создается разрежение. Впускной клапан 12, сжимая пружину 14, открывается и топливо поступает в полость «Д» насоса. При движении поршня вниз впускной клапан закрывается и открывается нагнетательный клапан 13, топливо под давлением поступает в нагнетательную магистраль, обеспечивая удаление воздуха из топливной системы двигателя через клапан ФТОТ и перепускной клапан ТНВД.
После прокачивания системы необходимо опустить поршень и зафиксировать его поворотом по часовой стрелке. При этом поршень прижмется к торцу цилиндра через резиновую прокладку, уплотнив полость всасывания топливо-прокачивающего насоса.
Топливопроводы подразделяются на топливопроводы низкого давления – 0,4… 2 МПа (4…20 кгс/см ) и высокого давления более 20 МПа (200 кгс/см).
Топливопроводы низкого давления изготовлены из стальной трубы сечением 10 1 мм с паянными наконечниками.
Топливопроводы высокого давления равной длины (l=595 мм), изготовлены из стальных трубок внутренним диаметром 2+0,05 мм путем высадки на концах соединительных конусов с обжимными шайбами и накидными гайками для соединения со штуцерами ТНВД и форсунок.
Во избежание поломок от вибрации, топливопроводы закреплены скобами к впускным коллекторам.
Электрофакельное устройство (ЭФУ) предназначено для облегчения пуска холодного двигателя при температуре окружающего воздуха ниже минус 5 °С. Применение ЭФУ эффективно при температуре окружающего воздуха до минус 22 °С, при более низких температурах следует применять предпусковой подогреватель.
Принцип действия ЭФУ основан на подогреве воздуха, поступающего в цилиндры двигателя, факелами свечей. Топливо, поступающее к свече, сгорает не полностью. Несгоревшая часть его в виде паров и подогретый факелами свечей воздух поступает в цилиндры, создавая благоприятные условия для воспламенения топлива впрыскиваемого форсунками.
Перед пуском холодного двигателя производится прокачка топлива топливопрокачивающим насосом 30 (рисунок 42) для удаления воздуха и создания предварительного избыточного давления 25…45 кПа (0,25…0,45 кгс/см2) в системе питания на которое настроен клапан фильтра тонкой очистки топлива. Предварительное избыточное давление в системе питания также необходимо для уменьшения задержки подачи топлива к свечам ЭФУ.
С помощью кнопки ЭФУ производится разогрев свечей, а затем включение электромагнитного клапана 15. Топливо, за счет предварительного избыточного давления поступает к свечам 17.
При включении стартера топливоподкачивающий насос 18 подает топливо через фильтр тонкой очистки 16 к свечам 17 под давлением 130… 190 кПа (1,3… 1,9 кгс/см2), которое поддерживает перепускной клапан 24.
Сила тока, потребляемого ЭФУ, не превышает 24 А, такое значение потребляемого тока не оказывает отрицательного влияния на последующий стартерный разряд аккумуляторных батарей. При этом в 4-6 раз снижается сила тока, потребляемого стартером, вследствие более ранних вспышек в цилиндрах двигателя.
Генератор предназначен для работы по однопроводной схеме электрооборудования. На двигателе может устанавливаться любой генератор исходя из потребности изделия.. Электрическая схема генератора Г 273В показана на рисунке 53.
На генераторе имеются следующие выводы:
На регуляторе напряжения, встроенном в щеткодержатель генератора, установлен переключатель сезонной регулировки.
Уровень регулируемого напряжения генератора в положении переключателя JI (лето) при силе тока нагрузки 20 А, частоте вращения коленчатого вала двигателя (1450+100) мин, температуре окружающей среды (25+10) °С и включенной аккумуляторной батарее должен находиться в пределах 27…28 В, в положении З (зима)- 28,8…30,2 В.
На двигателе может быть установлен генератор 6582.3701, ТУ 37.003.1365-88 (см. таблицу 1).
Стартер 5662.3708 (рисунок 54) герметичного исполнения закреплен на картере маховика с левой стороны двигателя, состоит из двигателя, механизма привода и электромагнитного реле. Передаточное число привода стартера 11,3. Электродвигатель стартера постоянного тока, последовательного возбуждения. Зубчатое колесо привода 13 входит в зацепление с венцом маховика принудительно с помощью электромагнитного тягового реле 9. Из зацепления зубчатый привод выходит при отключении электромагнитного реле после пуска двигателя. На стартере применен привод с храповичным механизмом свободного хода.
Наименование, |
Кол. |
Наименование и обозначение марки ГСМ |
Масса |
Периодичность |
Рекомендации |
|||
основные |
дублирующие |
зарубежные |
Основная |
Дублирующая |
||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
1. Система |
|
Летом:
|
Летом: Зимой: |
ASTM 975-81, |
|
|
|
|
2. Двигатель с картером масляным: |
1 |
Всесезонно: |
Летом: Зимой: |
API СЕ, |
30 -2 л. |
ЕО
ТО-5500 ТО-2 |
ЕО
ТО-5500 2ТО-1 |
Проверить уровень Сменить масло |
3. Подшипники |
2 |
Смазка Литол-24 |
Лита |
|
0,015 кг |
ТО-2 |
ТО-2 |
Смазать через |
4. Система |
1 |
Охлаждающая жидкость |
|
|
18 л |
ЕО СТО |
|
Довести уровень |
Покупайте запчасти у нас :
Комплектуем заявки любой сложности, конкурентные цены, система скидок от объема. | |
Мы даем понятную гарантию качества запчастей от производителей | |
Оперативная доставка по России | |
Звоните по телефону (900) 323-41-41, или напишите на zap-kam16@yandex.ru Потребуется информация: модель авто, год выпуска, модель агрегата, класс Евро. |